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We present results for the two-dimensional planar model on the square lattice. 
We have developed a Monte Carlo routine which is more efficient than the 
single-spin-flip algorithms used previously. We report on the variation of the 
following quantities with temperature: specific heat, energy, magnetization, 
susceptibility, correlation function, helicity modulus, the density of vortex/ 
antivortex pairs, the average distance between a vortex and its nearest anti- 
vortex, and the average distance between a vortex/antivortex pair and the 
nearest pair. Our results are in excellent agreement with the reliable results 
reported in the literature and are in accord with the general features of the 
Kosterlitz Thouless theory. 

KEY WORDS: Planar magnetic model; critical phenomena; Kosterlitz- 
Thouless transition; vortices. 

1, I N T R O D U C T I O N  

The p l ana r  mode l  and  its closely re la ted cousin the x y  model  show unique 
features at low tempera tures .  (t) The  p l ana r  mode l  consists  of  spins of  unit  
d imens ion  which are restr ic ted to a plane,  whereas  in the x y  model  the 
spins are th ree -d imens iona l  vectors. These spins popu la t e  a la t t ice which in 
this work  is the two-d imens iona l  (2D) square.  These models  have been 
used as a means  of theore t ica l ly  s tudying  thin-fi lm superfluids,  thin-fi lm 
superconduc tors ,  a r rays  of Josephson  junct ions ,  and  di r ty  supercon-  
d u c t o r r  2) and  we consider  the p l ana r  mode l  as an a p p r o p r i a t e  s tar t ing 
po in t  for a p rope r  unde r s t and ing  of  high-T~ superconductors .  (3) The 
H a m i l t o n i a n  for these models  consists of  in terac t ions  Jx = Jy and  Jz = 0. 
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A theorem due to Mermin and Wagner (46) states that there should be 
no long-range order for a system with a spin dimensionality ) 2  and a 
system dimensionality 42, conditions satisfied by the 2D planar model. 
However the early series expansion results of Stanley and Kaplan (79) 
indicate the onset of some type of phase transition despite the lack of long- 
range order expected for a typical phase transition. In this paper we focus 
on the planar model whose Hamiltonian is 

u{o} = -J,j E 
<o> 

t~ 

= - J u  Z cos(0i- Oj) (1) 
/j' 

The spin-spin correlation function (a0o'r) for a system with a conventional 
second-order phase transition (1~ shows the following behavior in the 
different temperature regimes. 

For temperatures greater than the critical temperature Tc we expect 

lim (aoO-r) = 0 (2a) 
r ~ o o  

while for temperatures less than the critical temperature 

lim (erOCrr) = m 2 
r ~ c o  

(2b) 

where m is the spontaneous magnetization or order parameter. 
However, at T~. the correlation function is expected to show a power 

law decay of the form 

<(TOGr>~F-(d 2 + r / )  (2c) 

where d is the dimensionality of the system and t/is the correlation function 
exponent. 

We may appreciate the unique nature of the phase transition in the 
planar model by considering the Gaussian approximation, (1'1113) which is 
considered to be reliable at low temperatures. This is 

�89 f (v0) 2 (3) H =  

The Gaussian approximation of the planar model predicts that for all 
temperatures 
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whereas the susceptibility ;~ is infinite for all temperatures T < 8~. Although 
the Gaussian approximation is crude, it offers some indication of the rather 
peculiar behavior of the low-temperature phase of the planar model. Thus 
we find agreement with the theorem of Mermin and Wagner in that there 
is no long-range order, but we observe a power-law decay of the correla- 
tion function over a wide range of temperatures, behavior usually expected 
only at the critical point. 

The next section is devoted to a brief review of the Kosterlitz- 
Thouless (KT) theory followed by a review of the standard Monte Carlo 
routine. We describe our modifications to this procedure. In the subsequent 
sections we present our results and compare with the results of others 
(some obtained with the aid of supercomputers and novel tricks such as 
generalization of the Swendsen-Wang multi-spin-flip approach). (14'I5) Our 
results confirm the general scenario of the KT theory. In particular, we 
observe that the vortex/antivortex pair starts to unbind at a temperature 
approximately close to the KT temperature and that the vortices are more 
or less free at a temperature comparable to the observed peak of the 
specific heat. 

2. K O S T E R L I T Z - T H O U L E S S  T H E O R Y  

Our understanding of the planar model is embodied in what is com- 
monly referred to as the Kosterlitz-Thouless (KT) theory,(l'16'~7)which we 
briefly summarize. These is no long-range order at any finite temperatures, 
so that the magnetization is always 0 for T >  0. At low temperatures the 
system is unstable to spin waves and the Gaussian approximation is a good 
description since it is most probable that neighboring spins are more or less 
aligned in the same direction. In this low-temperature phase, KT predicts 
a power-law decay of the correlation function given by Eq. (2c) but with 
the distinction that r/(T) is temperature dependent. As the temperature is 
increased, additional spin excitations in the form of vortices are created. 
The presence of vortices causes deviations toward larger values for the 
correlation function exponent r/, which the Gaussian approximation 
estimates to be T/2rc. The presence of the vortices may be viewed as 
producing an effective temperature increase to the Gaussian result. The 
energy of a solitary vortex is proportional to the logarithm of the linear 
size of the system and it is energetically favourable to form pairs. As the 
temperature is increased, bound vortex/antivortex pairs are formed in addi- 
tion to the spin waves. At a specific temperature which is referred to as the 
KT transition temperature the vortex pairs start to dissociate. At a some- 
what higher temperature all the vortex pairs become for the first time 
weakly bound and this is reflected by a peak in the specific heat. There is 
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a clear distinction between the KT transition and the peak of the specific 
heat. Above the KT transition temperature, the correlation function 
changes from exhibiting a power-law decay to an exponential decay given 
by the equation 

(Cr0ar) ~ e  -r/~ (5) 

where ~ is defined as the correlation length. 
The susceptibility is infinite for all temperatures below the KT 

temperature and is expected to diverge with the correlation length as 

Z ~ ~2- ,(r) (6) 

where KT predicts that q(Tc)= 1/4. 
Above the KT transition the susceptibility and the correlation length 

are expected to diverge with an essential exponential singularity as 

Z = a z  e b z t  " 

= a ~ e  b~t ,' 
(7) 

where t is the reduced temperature [ t - ( T - T c ) / T c ]  and the exponent 
v = 1/2, as predicted by KT theory. 

3. M O N T E  CARLO M E C H A N I C S  

The Monte Carlo method is comprehensively reviewed in ref. 18 and 
we briefly review the important elements for the planar model. (19 21) Start 
with an initial state of the spins--random directions if the starting 
temperature is high (kT/J~2.0) or all spins ordered if the starting 
temperature is low (kT/J ~ 0.2) and, for a continuous temperature scan, the 
initial configuration is the last output configuration from the previous 
temperature. The micro unit of a Monte Carlo step is as follows: 

(i) The random selection is made of a site on the lattice--we shall 
refer to the spin at this site as the target spin. 

(ii) The energy is obtained from the interactions of the target spin 
with its four nearest neighbors. 

(iii) A new direction for the target spin is randomly selected and the 
energy for this new orientation is evaluated. 

(iv) The selection between the two orientations of the target spin is 
made using their Boltzmann probabilities. 
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When every site has been interrogated and updated in this way we 
have completed a Monte Carlo step. Several thousand Monte Carlo time 
steps are performed before the system is expected to reach equilibrium and 
then hundreds of thousands of configurations are generated in order to 
obtain reliable equilibrium statistics. A useful reference is the article by 
Tobochnik and Chester, (19~ where sufficient details and results are supplied 
to allow for an easy check of the algorithm. A weakness with the above 
Monte Carlo scheme is the random selection of the new orientation of the 
target spin, as it is unlikely that we would select a probable direction in 
this manner unless many attempts have been made in the selection of 
possible directions. This places severe computational demands on obtaining 
reliable equilibrium data and we address this problem next. 

The resultant vector R obtained from summing the four neighboring 
spins of the target spin has a magnitude 0 < R < 4. We discretized R into 
intervals of 0.025. Thus a value of R which is between 0.0125 and 0.0375 
we consider as 0.025. For each value of R we construct a table of angles 
{Oi} consisting of 4000 entries where the probability of an angle O is 
proportional to its Boltzmann probability [ e x p ( [ J / k T ] ,  R cos O)]. The 
angle O is the deviation from the resultant direction. This table is refreshed 
at periodic intervals during a Monte Carlo run--after  every 5000 Monte 
Carlo steps. Whenever we visit a site we select a new direction which is 
dependent on the resultant vector from the nearest neighbors of the target 
spin (properly discretized). This new angle is obtained by simply generating 
a random number in the interval 04000.  We may get a rough estimate of 
the improvements generated by this procedure by considering a visit to a 
single site as comparable to several visits from the standard approach. The 
table of angles may be constructed from 4000 visits (we do not claim that 
our approach is 4000 times better, but only that we select an angle for an 
update from 4000 angles) by the standard method and the frequency of an 
angle in the table is proportional to its Boltzmann weight. "Important  
sampling" is used to select the new state of the target spin. Preliminary 
tests on a DEC workstation indicate that our approach is about 8 psec 
faster in updating a single spin. A check of a deep quench from an initial 
random state to T =  0.3 shows that this method relaxes to the equilibrium 
energy in about 300 MCS, while the standard approach took about 
12,000 MCS (Fig. 1). The differences in efficiency between the two methods 
will be indistinguishable at high temperatures and both methods will suffer 
from critical slowing down near T c. The update to a new state takes only 
slightly longer than the update of an Ising spin. This difference is due to the 
evaluation of the resultant vector, whereas for the Ising model we simply 
sum a set of + l's and - l's. We have checked the effects of minimizing the 
interval of discretization and find the Monte Carlo data to be 
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Fig. 1. Time evolution of the energy of the system from an initial random state to 
equilibrium at T=0.3. Note that the standard method (.) is still not at equilibrium after 
10,000 MCS, while the modified method (+) has attained equilibrium after ~ 300 MCS. 

indistinguishable from those obtained using the above constraint. We show 
these results below and also compare our thermodynamic averages with the 
results obtained with other techniques. (14,:s'22,23) 

4. R E S U L T S  

The energy of a 30 x 30 system versus temperature is shown in Fig. 2a, 
where we include the results of Tobochnik and Chester (19) (.) and those of 
Fernandez et al. (22) ( + ) .  The agreement is good. The fluctuation of the 
energy is a measure of the specific heat and this is shown in Fig. 2b. We are 
interested in the variation of the peak of the specific heat with system size 
and this is shown in Fig. 3a, where the peak of the specific heat is plotted 
versus 1/L (the linear dimension of the system). We took advantage of the 
histogram method highlighted by Ferrenberg and Swendsen (24) and the 
modifications made to this technique by Bowen et al. (2s) to reduce com- 
putational demands. It  seems from this extrapolation that the peak of the 
specific heat for the infinite system will occur at T ~  1.02 + 0.02. The other 
property worth noting from Fig. 3b is that the height of the specific heat 
peak is more or less independent of the system size for L > 3 0 .  The 
extrapolated temperature at which the peak of the specific heat occurs for 
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Fig. 2. Monte Carlo data for an L = 30 system. (a) The energy vs. temperature ( , )  with the 
results of Tobochnik and Chester (19) (.)  and Fernandez et  al. 122) ( + )  superimposed for 
comparison; (b) the specific heat measured from energy fluctuations vs. temperature; a 
peak is observed at ~ 1.07kT/J. 
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Fig. 3. (a) The specific heat peak temperature vs. the inverse linear dimension of the system 
(l/L). The extrapolation for an infinite system gives a peak at about T =  1.02kT/J. (b) The 
specific heat vs. temperature for L = 2 0  (-), L = 3 0  (+ ) ,  L = 4 5  (,),  and L = 6 0  (O).  The 
height of the peak is independent of system size for L > 30. 
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the infinite system agrees with the results of Tobochnik and Chester ug~ and 
Gupta et aL ~23l 

The helicity modulus (26~ is defined by 

2 
? = -- ~ ( E )  kB TL  2 

where eij is a unit vector pointing from the target spin i to the nearest 
neighbor j and x is a unit vector pointing along the x axis in the plane of 
the lattice. The helicity modulus is a measure of the relative phase shift of 
the spins of the system. For an infinite system, it is expected to show a 
discontinuous drop as the temperature approaches T c, becoming 0 for 
T >  To. For the finite system, we observe an effective T,  by looking for the 
intersection of a straight line ( - - - )  of slope 2/~ with the helicity modulus 
curve. This occurs at the temperature of 0.91, as shown in Fig. 4. This 
result is in good agreement with that reported in the literature. We also 
looked at the helicity modulus for the 60x 60 system and note that 
T,, is now 0.905. The critical temperature is only weakly dependent on 
system size and the value appears to be ~ 0.90, in agreement with the value 
of T~ = 0.89 quoted by Tobochnik and Chester. C19) This excludes the peak 
of the specific heat from being associated with To, so that we confirm that 
the specific heat peak is unrelated to critical phenomena. 

H e l i c i t y  M o d u l u s  
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temp in kT/J 
Fig. 4. A plot of the helicity modulus vs. temperature for an L = 30 system. The intersection 
of 2T/~ with the curve gives a measurement of Tc~O.91kT/J. 
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1.3 

Fig. 5. (a) The susceptibility vs. temperature (-) for an L = 3 0  system with the results of 
Edwards (15) (U]) for an L =  32 system superimposed. (b) Susceptibility vs. temperature for 
T >  Tc. The solid line shows the prediction of KT  theory. 



M C  S t i m u l a t i o n  o f  2D P lanar  M o d e l  1107 

The fluctuations of the magnetization determine the susceptibility •, 
and the variation of the susceptibility with temperature is shown in Fig. 5a, 
where we include the data of Edwards. (15) The agreement is good. The 
variation of Z for temperatures above the KT transition is shown in Fig. 5b. 
The solid line is the prediction of the KT theory with the following values 
for the constants in Fig. (7): az=0.135, bz= 3.2l, v = 1/2, and To=0.90. 
We do not think that ou rda t a  are of sufficient accuracy, mainly due to the 
relatively small system size, to resolve the conflict in the literature between 
the exponential singularity prediction of KT and the normal power-law 
behavior of a second-order transition. <23'~n The spin spin correlation 
function critical exponent ~/ is expected to vary with temperature for 
temperatures below T c according to Eq. (2c) and this is shown in Fig. 6. 
We note in Table I that at low temperatures t/(T) is in excellent agreement 
with the predictions of spin-wave theory. At the critical temperature of 0.90 
we measure a value for r/ of ~0.23, which is close to the KT prediction 
of 0.25. 

The density of the vortex/antivortex pairs as a function of temperature 
is shown in Fig. 7a, and in Fig. 7b we show the In of the density versus 
temperature. The slope of the graph gives the energy to create a vortex/ 

log g(r) 

F 

0.4 
lo 

l og  r 

Fig. 6. A log-log plot of the correlation function vs. distance r.  Shown are plots for an L = 30 
system for T = 0 . 2  (.'), T = 0 . 3 ( + ) ,  T = 0 . 4  (,), T=0 .5  ( ~ ) ,  T=0 .6  ( x ) ,  T = 0 . 7  (�9 T=0 .8  
(V),  and T =  0.9 ( x ). The values of q obtained from the slopes are listed in Table 1 along 
with the predictions from the spin-wave theory (in parentheses). 
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antivortex pair to be ~7.4. This value is to be compared with 9.4 of TC 
and 10.2 from KT. In Fig. 8a we show the thermal average separation of 
a vortex with its nearest antivortex (+) .  At low temperatures we observe 
a tightly bound pair where the vortex and its bound neighbor are on 
neighboring plaquettes. At a temperature of ~ 0.9 we observe the beginning 
of a separation of their pair, reaching a maximum at around T ~  1.1. 
Above this temperature, increased crowding from the high V/AV pair 
density begins to reduce the V/AV separation. We also include the average 
distance between a V/A pair and the next closest pair (.). We note that at 
low temperatures the pairs are widely separated, indicating a low density 
of V/A pairs. However, as we approach a temperature of ~ 1.2, the distance 
between two pairs and the V/AV separation become of the same order, 
indicating the complete unbinding of the vortex pairs into a vortex gas. 
Figure 8b shows this vortex pair uncoupling more clearly by showing the 

Table  I. M o n t e  Car lo  Data  fo r  the  L = 3 0  System a 

Hel ic i ty  

T E n e r g y  )~ q Vor t i c i ty  D R m o d u l u s  

0.1 - 1.9495 8829 - -  0 - -  - -  0.9745 

0.2 - 1.8976 4416 0 .035(0.032)  0 - -  - -  0 .9478 

0.3 - 1.8438 2982 0 .051(0.048)  0 - -  - -  0.9195 

0.4 - 1 . 7 8 7 7  2241 0 .071(0 .064)  1 . 8 9 E - 7  1.000 1311 0 .8892 

0.5 - -  1.7297 1799 0 .092(0.080)  6 . 9 8 E -  6 1.043 214 0.8567 

0.6 - 1 . 6 6 8 2  1497 0.12 (0.095) 7 . 5 2 E -  5 1.052 65.1 0 .8204 

0.7 - 1 . 6 0 2 2  1266 0.15 (0.111) 4 . 1 1 E - - 4  1.099 27.8 0.7779 

0.8 - 1 . 5 2 7 7  1113 0.18 (0.127) 0 .00153 1.165 14.4 0.7201 

0.9 - 1.4402 995 0.23 (0.143) 0 .00446 1.293 8.45 0.6239 

1.0 - 1 . 3 2 7 8  899 - -  0 .01110 1.569 5.36 0.4119 

1.1 - -  1.1808 817 - -  0 .02384 2.003 3.65 0.0788 

1.2 - 1.0473 749 - -  0 .03742 2.101 2.92 0.0043 

1.3 - 0 . 9 3 9 7  692 0 .04934 2.053 2.54 0 .0024 

1.4 " - 0 . 8 5 2 8  643 - -  0 .05956 2.000 2.31 - -  

1.5 - 0 . 7 7 8 4  600 - -  0 .06869 1.952 2.15 - -  

1.6 - 0 . 7 1 7 1  562 - -  0.07643 1.917 2.04 - -  

1.7 - -0 .6649  529 - -  0 .08313 1.886 1.96 - -  

1.8 - - 0 . 6 1 9 2  500 - -  0 .08908 1.859 1.89 - -  

1.9 - -0 .5811  474  - -  0 .09406 1.840 1.84 - -  

a T e m p e r a t u r e  l isted in c o l u m n  1, ene rgy  in c o l u m n  2, suscept ib i l i ty  in c o l u m n  3, r/ f r om the 

l o w - t e m p e r a t u r e  fo rm of  the  spin  c o r r e l a t i o n  func t ion  given by  Eq.  (2c) in c o l u m n  4 a l o n g  

wi th  the  s p i n - w a v e  p r ed i c t i on  ( t / =  T/27z) in pa ren theses ,  vo r t ex  p a i r s / s i t e / M C  step in c o l u m n  

5, ave r age  v o r t e x - a n t i v o r t e x  s e p a r a t i o n  D in c o l u m n  6, a v e r a g e  s e p a r a t i o n  be tween  a V /AV 

pa i r  a n d  its nea re s t  p a i r  R in c o l u m n  7, a n d  helici ty m o d u l u s  in c o l u m n  8. 
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Fig. 7. (a) Plot of the vorticity/site vs. temperature  (-)  for an L = 30 system with the values 
of Tobochnik  and Chester  ~19) included for compar i son  ( + ) .  (b) A plot of In (vorticity) vs. the 
inverse temperture gives the energy (7.4) to create a V/AV pair. 
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Fig. 8. Monte Carlo results for (a) an L = 30 system showing D, the V-AV separation (+ ) ,  
and R, the average pair-pair separation (-). At Tc the pairs begin to dissociate into a vortex 
gas; at T =  1.2, D and R are of the same order. (b) The V-AV separation for L = 30 (.), 
L = 64 ( + ) ,  and L = 100 (,),  where a shift occurs in the maximum separation toward a lower 
temperature. 
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V/AV separation versus temperature through the KT transition tem- 
perature. Several curves are shown representing different lattice sizes. We 
see that the V/AV pair separation reaches a maximum at a somewhat lower 
temperature closer to the KT transition temperature for larger lattice sizes. 
These peaks reflect the point at which the V/AV pairs are weakly bound 
and the slight shift in the peak with system size is consistent with the 
observed shift in the specific heat peak with system size. 

Below the KT transition the correlation length is infinite and this is 
reflected in the power-law decay of the correlation function. Above T C the 
spin-spin correlation function is expected from scaling arguments to decay 
as(28/ 

g(r) ~- ( a o a ~ )  ~- (1IF 1/4) F(r/r (9) 

where F(x)  is a universal crossover function with x = r/~. Figure 9 shows 
this function for T=l .05  (~.=15.0), T=  1.07 (~=13.0), and T=I.1  
(~ = 9.6). The limiting behavior of F(x)  is 

F(x)  ~ (In X )  1/8 X ~ 1 
(lO) 

~x-1/4e-X X>~ 1 

We have assumed the large-x behavior of F(x)  in our determination of the 
correlation length ~. 

0.4 

0.3 

0,2 
L.  

0.1 

• 

~o 
v• 

0 1 2 3 4 

Fig. 9. Monte Carlo. results for an L = 151 system of the universal crossover function F(x) 
vs. x, where x=r/~. The plot shows the function at T =  1.05 (V), T =  1.07 (O),  and 
T =  1.10 ( x ) .  
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We have included our raw data in Table I to facilitate the work of 
others who venture into simulation of this model. We have found the 
results of Tobochnik and Chester, (19) Edwards, (15~ Gupta et  al. (23~ and 
Wolff (14) of immeasurable benefit in this regard. 

5. C O N C L U S I O N  

We have developed an efficient method of simulating the planar model 
where the update of a spin is only slightly longer than the update of a spin 
for the Ising model. This was achieved by selecting a new direction for the 
target spin from a list of deflection angles away from the direction of the 
resultant vector. This list was determined by the magnitude of the resultant 
vector and temperature; the angles occurred with a frequency proportional 
to their Boltzmann probabilities. This has allowed us to simulate the 
planar model on workstations with VAX 11/780 capabilities. The algorithm 
is fairly demanding of memory--an array of 640,000 elements is required 
to store the {O's} for the direction update. Most of the computation was 
done on a DEC 3000 workstation with 16 Megabytes of memory. 

We find that our results are compatible with the general tenets of the 
Kosterlitz-Thouless theory. At low temperatures (T<  0.9) the correlation 
exponent t/ is temperature dependent. We note that the spin-wave predic- 
tion for t/agrees quite well with our numerical results for T <  0.5, when the 
presence of vortices begins to cause deviations from the predictions of spin- 
wave theory. The helicity modulus falls sharply but in a continuous manner 
in the vicinity of the KT transition; however, it is not hard to imagine a 
sharp discontinuity for the infinite system. The specific heat displays a peak 
extrapolated for an infinite system to be at a temperature of ~ 1.02 quite 
distinct from the KT transition temperature at ~0.9. The specific heat peak 
reflects the point at which the V/AV pairs are weakly bound. The maxi- 
mum V/AV separation (where the pairs are for the first time weakly 
bound) occurs at a temperature consistent with the specific heat peak for 
all lattice sizes, confirming this explanation. The height of the specific heat 
peak appears to be independent of the size of the system for L > 30 and is 
therefore not associated with critical properties. The KT transition at 
T ~  0.9 indicates the onset of the separation of the V/A pairs, whereas at 
a temperature above 1.0, the vortex is at a maximum distance from its 
neighboring antivortex. This is in accord with the KT picture. 
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